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ABSTRACT: Typical environmental conditions associated with horizontal convective rolls (HCRs) and cellular convec-

tion have been known for over 50 years. Yet our ability to predict whether HCRs, cellular convection, or no discernable

organized (null) circulation will occur within a well-mixed convective boundary layer based upon easily observed en-

vironmental variables has been limited. Herein, a large database of 50 cases each of HCR, cellular convection, and null

events is created that includes observations of mean boundary layer wind and wind shear, boundary layer depth; surface

observations of wind, temperature, and relative humidity; and estimates of surface sensible heat flux. Results from a

multiclass linear discriminant analysis applied to these data indicate that environmental conditions can be useful in

predicting whether HCRs, cellular convection, or no circulation occurs, with the analysis identifying the correct circu-

lation type on 72%of the case days. This result is slightly better than using amean convective boundary layer (CBL) wind

speed of 6 m s21 to discriminate between HCRs and cells. However, the mean CBL wind speed has no ability to further

separate out cases with no CBL circulation. The key environmental variables suggested by the discriminant analysis are

mean sensible heat flux, friction velocity, and the Obukhov length.

SIGNIFICANCE STATEMENT: We spend our lives in the boundary layer, the layer of the atmosphere that extends

upward from the ground to a typical daytime depth of 1 km. When viewed from above, there are two common flow

patterns that occur within this layer—long parallel lines of risingmotion that extend from tens to hundreds of kilometers,

with long parallel lines of sinking motion in between, and more circular regions of vertical motion that form adjacent to

one another. These flow patterns influence the movement of heat, moisture, and winds within the boundary layer. This

study shows that the flow pattern can be predicted from routinely available Doppler radar and surface weather station

observations.
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1. Introduction

Horizontal convective rolls (HCRs) and cellular convection

(cells) have been a topic of study since Woodcock (1940) ex-

plored the flight patterns of herring gulls in the cold season off

the coast of Massachusetts. He observed two distinct flight

patterns that were used to deduce very different boundary

layer circulation types: a columnar form of ascending motion

(cells) and a linear form of ascending motion (HCRs). He

found that there was a 10-m wind speed threshold of 7m s21

at which cells ended and HCRs began, and further suggested

that HCRs were not produced for wind speeds $ 13m s21 or

when the water temperature was less than the air temperature

(suggesting a stable boundary layer). Deardorff (1976) arrived

at the same conclusion as Woodcock (1940) using free-

convection scaling arguments. Deardorff suggested that the

13m s21 limit on HCRs could have been a behavioral choice

of herring gulls rather than a wind speed limit of the HCRs

themselves.

The advent of aircraft, satellite, and radar opened a new era

of research on HCRs and cells, as expansive cloud patterns not

clearly discernable from the ground became very apparent

when viewed from above (Kuettner 1959, 1971; Malkus and

Riehl 1964) or via ground-based remote sensing (Angell et al.

1968; Konrad 1970; Berger and Doviak 1978). Kelly (1982)

used Doppler radar to investigate the relationship between

radar return signals and precipitatingHCRs in theGreat Lakes

region during winter. Doppler radial velocities produced hor-

izontally and vertically alternating confluence and difluence

patterns indicative ofHCRupdraft and downdraft circulations.

Doppler radar also was shown to be capable of sensing HCRs

in clear air during the warm season owing to an increased

concentration of insects within the upward branch of an HCR

circulation (Christian and Wakimoto 1989; Geerts and Miao

2005). The ability of Doppler radar to detect HCRs and cells in

clear air enhanced our abilities to explore these circulations,

because the formation of clouds was no longer needed for

detection.

These studies and others led to a basic understanding that in

daytime convective boundary layers with moderate surface

buoyancy flux, HCRs and cells often develop to help transport

heat, moisture and momentum vertically throughout the bound-

ary layer (see Asai 1970; Brown 1980; Atkinson and Zhang 1996

and references therein).When surface buoyancy flux is the driving

force, these vertical circulations are hampered by vertical wind
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shear aligned perpendicular to the axis of the vertical circula-

tions. Thus, for larger values of wind shear the axes of the

boundary layer vertical circulations tend to be aligned with

the wind shear vector and yield the long, linear updraft and

downdraft structures characteristic of HCRs. Wind shear is

always present in the convective boundary layer owing to the

effects of surface friction, and when the wind direction is

constant with height the wind shear vector and wind vector are

parallel to each other. When this happens, the mean boundary

layer wind speed is often a reasonable proxy for the low-level

boundary layer wind shear magnitude. However, horizontal

temperature and pressure gradients can create boundary layer

winds that change direction with height and in these cases the

boundary layer wind speed is no longer a good proxy for the

low-level boundary layer wind shear magnitude. For smaller

values of wind shear the buoyancy effects can dominate over

the effects of wind shear yielding no preferred orientation to

the updraft and downdraft circulations. Thus, cells become the

favored outcome.

Special observations from field experiments also have been

critical to improving our understanding of HCRs and cells

(e.g., LeMone 1973; Brümmer et al. 1985; Kristovich 1993;

Brümmer 1999) as well as their importance to convective ini-

tiation, especially near boundaries (Wilson et al. 1992; Xue and

Martin 2006; Weckwerth and Parsons 2006). Weckwerth et al.

(1997) used a combination of airborne radar and flux mea-

surements to investigate the environmental characteristics that

support HCR and cell formation. Their results suggest that

moderate sensible heat flux (SHF), some wind shear, andmean

convective boundary layer (CBL) wind speeds $ 5.5m s21

were necessary for HCR existence. This wind speed threshold

agrees reasonably well with the 7m s21 threshold found by

Woodcock (1940). Below this wind speed threshold value,

Weckwerth et al. (1997) show that either cells or no organized

boundary layer circulations (nulls) were found.

One of the challenges with using data from field experiments

is that, whereas the number of types of available observations

is large and the atmospheric sampling is comprehensive, the

number of cases for which these observations are available

is relatively small. One must turn to operational datasets to

obtain a large number of cases. Thankfully, a number of methods

are available that provide information on the environmental

conditions within CBLs. The velocity–azimuth display (VAD)

method can be used to calculate the mean horizontal wind

using Doppler radar radial velocity observations at a fixed

range gate (Browning andWexler 1968). Applying the VAD to

radial velocity observations at different range gates yields a

vertical wind profile from approximately 200m above ground

level to above the top of the CBL onmost days. The addition of

dual-polarization observations to the WSR-88D allows layers

of Bragg scattering to be identified, which often occurs near the

top of the CBL and is characterized byZDR values close to 0 dB

(Melnikov et al. 2011, 2013; Davison et al. 2013; Richardson

et al. 2017a,b). Banghoff et al. (2018) further showed that the

top of the CBL Zi can be estimated from quasi-vertical profiles

(QVPs) of differential reflectivity ZDR. Using the estimated Zi

and the VAD-derived vertical wind profile one can easily

calculate mean CBL wind speed and mean CBL wind shear.

Surface mesonetworks have expanded greatly since 2000

(Mahmood et al. 2017) and some have sufficiently accurate

temperature and wind measurements at two heights to provide

estimates of SHF and friction velocity u* (Brotzge and

Crawford 2000). Thus, using observations from the national

network of WSR-88Ds and selected surface mesonets, one can

routinely estimate the mean CBL wind speed, mean CBL wind

shear, Zi, surface virtual potential temperature uy, surface

SHF, and u*. These variables can be combined to calculate

numerous other helpful boundary layer parameters.

Banghoff et al. (2020) used observations from the Twin

Lakes, Oklahoma, WSR-88D over 10 warm seasons (1 April–

30 September) to document over 1380 cases of HCR and cell

occurrence, duration, and associated aspect ratios. They found

that on precipitation-free days, HCRs occurred on 71% of the

days, cells occurred on 21% of the days, and nulls occurred on

7% of the days. HCRs and cells typically formed in mid-

morning and persisted on average for 3–4 h. Different circu-

lation types tended to be more common at different times of

the warm season, with HCRs being more common in April,

May, June, and early July and cells being more common in

August and September. Nulls are scattered throughout the

warm season. The monthly trends indicate that changing en-

vironmental conditions correlate to changes in circulation type,

suggesting that environmental conditions can be used to pre-

dict circulation type. The Banghoff et al. (2020) study repre-

sents the largest dataset of HCRs and cells ever investigated

and is the foundation for the present study (dataset available

from Stensrud et al. 2019).

Improved knowledge of the environmental conditions as-

sociated with each type of boundary layer circulation would

clarify the environmental influences on circulation type in

addition to helping modelers and forecasters better predict

boundary layer organization. Thus, the dataset created by

Banghoff et al. (2020) is used to identify cases representing

the three circulation types. The environmental conditions for

these cases are determined from routinely available observa-

tions and differences between the environments of HCRs,

cells, and nulls explored. Only cases that display a single cir-

culation type are selected for study, with the resulting dataset

consisting of 50 cases per circulation type: HCR, cell, and null.

The size of the dataset should yield enough variability to ex-

amine which environmental parameters are associated with the

three circulation types. Thepotential for anoperationalmethod to

determine whether HCRs, cells, or null cases are more likely in a

given environment also is investigated.

Section 2 describes the observational datasets and analysis

methods used. This discussion is followed by analysis results in

section 3, which includes both a comparison of the mean en-

vironmental conditions for the three circulation types as well as

results from a multiclass linear discriminant analysis. A sum-

mary is found in section 4.

2. Data and methods

Warm-season Doppler radar and Oklahoma Mesonet ob-

servations from central Oklahoma from 2013 to 2017 are used

to create a dataset of 50 cases each of HCRs, cells, and null
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cases from the dataset of Banghoff et al. (2020). The cases

selected for subsequent analysis display only a single circula-

tion type (HCR, cell, or null), even though HCRs transition to

or from cellular convection on roughly one-third of the cases

(Banghoff et al. 2020) and hybrid HCR and cell events have

been observed in other studies (Grossman 1982; LeMone et al.

2010). Only data from 2013 and later are used owing to the

need for dual-polarization WSR-88D observations at the Twin

Lakes (KTLX) radar to estimate Zi. The cases span all 6 months,

although HCR cases are more common in May and June and

there is only one HCR case in September (Fig. 1). Cell and null

cases are spread fairly evenly throughout the warm-season

months, although there are more null cases in May than the

other months.

a. Oklahoma Mesonet observations

Oklahoma Mesonet stations consist of 10-m towers that

collect wind observations at 2 and 10m above ground level

(AGL), temperature and relative humidity at 1.5 and 9m

AGL, and atmospheric pressure, rainfall, solar radiation, and

soil temperature and soil moisture at three depths (McPherson

et al. 2007). The Mesonet has been in operation since 1994,

and it has grown over time to 120 stations, with at least one

Mesonet station in each of the 77 counties in Oklahoma.

Observations from the Mesonet are collected every minute,

and 5-min-average values are reported for most variables

(Brock et al. 1995; McPherson et al. 2007). The instrumenta-

tion used by the Oklahoma Mesonet is reported in McPherson

et al. (2007).

Oklahoma Mesonet stations underneath the cone of the

KTLX WSR-88D surveillance scans are used to determine

surface conditions and to estimate surface SHF and u*. These
stations are the Norman, Shawnee and Spencer, Oklahoma,

sites (Fig. 2), and all three sites are grass covered as is typical

for central Oklahoma. It is assumed that the near-surface en-

vironment is horizontally homogeneous under the radar cone

to a distance of 40 km from KTLX such that the Mesonet

station density is sufficient to provide reasonable estimates of

the surface variables calculated.

The profile gradient method as outlined in Brotzge and

Crawford (2000) is used to estimate SHF. While surface buoy-

ancy flux is most relevant to boundary layer structure, it is very

hard to measure and so SHF commonly is used instead. The

estimation method is based on dynamical theory discussed by

Panofsky (1963) and Paulson (1970) and requires wind speed

and temperature observations at two heights. The SHF is es-

timated every 5min using the Mesonet observations at the

three sites. Results show that the value of SHF on subhourly

time scales can be particularly noisy owing to the influence of

low-level clouds, yet it is the hourly trends in SHF that tend to

impact the boundary layer circulation (Weckwerth et al. 1996).

To reduce the noise in the SHF estimates, a five-point median

filter is applied to the SHF time series from 0000 to 2355 UTC

on each day for each of the threeMesonet stations. The filtered

values of SHF at each of the three stations are then averaged to

provide a mean value of SHF every 5min, which is used in our

subsequent calculations and the analyses.

Oklahoma Mesonet observations also are used to calculate

uy, the friction velocity u*, and the Obukhov length L every

5min at each station; uy is calculated from Mesonet observa-

tions of temperature, pressure and relative humidity at 2m,

and u* is a function of the Reynolds stress at the surface and is

calculated directly fromMesonet data using wind observations

and adjustments due to stability, as in Brotzge and Crawford

(2000). The 5-min values of uy and u* are averaged over the

three Mesonet stations. The Obukhov length is the height

AGLwhen buoyant forces start to dominate over wind shear in

FIG. 1. Number of cases plotted as a function ofmonth during the

warm season from April to September of HCRs (black), cells

(blue), and null events (brown). Cases were selected from the years

2013–17 using the database from Banghoff et al. (2020).

FIG. 2. Region around the KTLXWSR-88D in central Oklahoma,

including the Norman (NORM), Spencer (SPEN), and Shawnee

(SHAW) Oklahoma Mesonet sites and the 40-km radar range

ring. The locations of Oklahoma City and major roadways are

indicated.
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the generation of turbulence, and it is negative in convective

environments. The Obukhov length is calculated from

L’
2rc

p
u
y
u3

*
kg3SHF

, (1)

where k5 0.4 is the von Kármán constant, g5 9.81m s22 is the

gravitational acceleration, cp 5 1004 J kg21 K21 is the specific

heat at constant pressure, and r is the air density, which is the

average calculated from the three Mesonet stations every

5min. As mentioned above, it also is assumed that SHF is a

reasonable estimate for the surface buoyancy flux. Last, the

free convective scaling velocity w* can be thought of as a typical

updraft speed for convective thermals in the CBL (Stull 1988)

and is calculated from
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, (2)

where SHF is again used instead of buoyancy flux and SHF,

uy, and r are 5-min average values calculated as previously

described, and Zi is determined from the ZDR observations

following Banghoff et al. (2018), which is explained below.

Both L and w* are calculated every 5min.

b. KTLX WSR-88D observations

The KTLX WSR-88D is located to the southeast of the

Oklahoma City metropolitan area (Fig. 2) at an altitude of

338mMSL. This radar was upgraded to have dual-polarization

(hereinafter dual-pol) capabilities in 2012. The WSR-88D ob-

servations typically are available every 10min when the radar

is in clear-air mode and every 4min when in precipitation

mode. For majority of the cases selected, KTLX observations

are every 10min. Radar observations are used to estimate the

mean CBL winds UCBL, the mean CBL wind shear dU/dz, and

Zi and to identify the circulation type. As discussed in

Banghoff et al. (2018), Bragg scattering is often found near the

top of the CBL and is characterized byZDR values close to 0 dB

(see also Melnikov et al. 2011, 2013; Davison et al. 2013;

Richardson et al. 2017a,b). Thus, the value of ZDR can be used

to distinguish between biological scatterers, which have much

larger values of ZDR, and the turbulent features that cause the

Bragg scatter zone, which has much lower ZDR, and hence can

be used to diagnose Zi (Banghoff et al. 2018).

The value ofZi is calculated over the radar sampling volume

using the QVP technique described by Kumjian et al. (2013)

and Ryzhkov et al. (2016). A time series of QVPs of ZDR is

created from 1200 to 0000 UTC (subtract 6 h to obtain local

time) to encompass the daytime development of the CBL.

From this QVP time series, the vertical minimum of ZDR is

determined for each observation time throughout the day-

time hours by visual inspection and defines the value of Zi. In

the cases of multiple minimum zones, the center of the bot-

tom minimum zone is taken to be the value of Zi. In case of a

large minimum zone (; 200m thickness), the bottom of the

zone is taken to be the value of Zi. The values of Zi vary

smoothly over the daytime hours and are interpolated to 5-min

intervals.

The VAD method is used to calculate the environmental

winds as a function of height AGL within the radar sampling

volume (Browning and Wexler 1968). The VAD method is

applied to each range gate for radar elevations of 0.58 and

1.58 and then binned in 50-m vertical intervals from 220mAGL

(lowest altitude of the first radar measurement used) to the top

of the CBL at Zi. The VAD winds represent an average wind

speed within the radar volume. Knowledge of the mean CBL

winds at 50-m vertical intervals allows for easy calculation of

UCBL over any averaging period. Wind shear dU/dz is calcu-

lated by taking the difference between the wind velocity at

the top of the CBL (UZi
) and wind velocity at 10m from the

Oklahoma Mesonet and dividing by (Zi 2 10m) following

Weckwerth et al. (1997).

To classify boundary layer circulations into HCR, cell, or

null cases, Banghoff et al. (2020) use a plan position indicator

(PPI) plot of radar reflectivity factor at horizontal polarization,

ZH, to manually investigate the PPI plots looped over the

daytime hours. Since ZH values for atmospheric biota are

typically , 20 dBZ, ZH is displayed in the range from 210 to

25 dBZ. This range makes it much easier to observe biota and

also aids in identifying precipitation and deep convection that

may impact the circulations. Loops of ZH at an elevation angle

of 1.58 are used to identify start times and end times for

boundary layer circulations, with the 1.58 angle being used

to reduce ground clutter contamination present at the lowest

elevation. The classification of boundary layer circulations for

each case is revisited here by visual inspection and the classi-

fications confirmed (Fig. 3). HCRs are identified by their long

ZH bands, with their orientation being about parallel to the

mean wind in the CBL (Fig. 3a). Cells are identified by their

polygonal or circular shapes on the ZH returns (Fig. 3b). Null

cases are identified by their lack of organizational structure

(Fig. 3c), which could happen primarily for two reasons: the

environment is not conducive for boundary layer circulation

organization or there is insufficient biota to cause ZH returns.

To avoid the latter situation, null cases in this study are re-

quired to have sufficientZH returns above 20 dBZ in this study.

The classification necessarily is subjective and focused upon

the entire reflectivity field surrounding the radar and not just

one region of this field. It is possible that HCRs and cells

could be active simultaneously, as seen in Grossman (1982)

and LeMone et al. (2010), and underlying terrain features

also may play a role in local deviations from the classical

linear and polygonal patterns. Animation of the PPIs on the

days selected suggests that the HCR cases selected here

represent only a single circulation type and are not a hybrid

of the two circulation types, although the cell cases are more

complex and may at times be a hybrid of the two circula-

tion types.

c. Linear discriminant analysis

Fisher (1936) outlines a process by which one can discrimi-

nate group membership on the basis of observed attributes,

which for this study translates into determining CBL circu-

lation type (HCR, cell, or null) using environmental obser-

vations. Given a set of training data from each of two known

groups, linear discriminant analysis (LDA) creates a linear
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function D for each group that combines the observed at-

tributes X, with

D
g
5 a

1
X

g,1
1 a

2
X

g,2
1 � � � 1 a

p
X

g,p
, (3)

where ai are the weights calculated by the technique and Xg,i

are the i 5 1, 2, . . . , p observed attributes from the g 5 1, 2

groups. Details on how the weights are calculated can be found

in Wilks (2006). The only assumption is that the underlying

covariance matrices are equal for the two groups; if the co-

variance matrices are unequal then the discrimination will be

less accurate but still may be very useful. Either dimensional or

dimensionless data can be used as attributes, providing great

flexibility when exploring datasets. One can view LDA as a

way to calculate a function that maximizes the separation of

the group means. Once the weights are determined from the

training data, D can be calculated for any X and group mem-

bership determined by whether the value of D is closer to the

mean value of D1 or D2 calculated from the training data (see

Wilks 2006). This same approach is calledmulticlass discriminant

analysis (MDA) when extended to three or more groups

(Rao 1948).

For the present study the groups are HCR, cell and null

events, and the attributes are SHF, L, u*, w*, Zi, UCBL, and

dU/dz. General guidance is that at least 5 cases are needed

for each attribute (Viana and Sansigolo 2016) and since this

study uses seven variables as attributes, the observational

dataset should have at least 35 cases for each group; thus, 50

cases are used for each group in this study. Because there

are three classification groups, three pairwise combinations

of classes are used with LDA to discriminate between

(i) HCRs and cells, (ii) HCRs and nulls, and (iii) cells and

nulls. Information on the observed frequency of HCRs,

cells, and nulls is not used in MDA; it is assumed that the

groups are equally likely and so for a three-group classification

a 33.3% correct rate is the expected correct percent value

for a random selection. A probabilistic classification ap-

proach is applied to the results of the three LDAs to de-

termine into which group the observations on a given day

belong (Wilks 2006). The group associated with the highest

FIG. 3. Equivalent radar reflectivity factor ZH at 1.48 for

(a) HCR, (b) cell, and (c) null events as sampled from the Twin

Lakes (KTLX) WSR-88D. The HCR signature has a distinct lin-

ear structure in the reflectivity field, whereas the cell signature has

circular to hexagonal features in a honeycomb-like collection. The

null signature has a much more random reflectivity field. These

signatures are typical of the patterns seen for the three circula-

tion types.
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probability is selected for each day. See Wilks (2006) for

further details.

With data that vary greatly in magnitude and variance, such

as seen in u* and Zi for instance, the equal covariance ma-

trices assumption is likely invalid. Thus, a rescaling is ap-

plied wherein the natural logarithm of the data values is

used. This rescaling is important because small variations in

the data become larger and large variations in the data become

smaller, thereby helping tomake the variances and covariances

more equal among the different variables and approaching

the assumptions for MDA. The matrix-to-matrix correlations

vary from 0.80 to 0.96 for the three covariance matrices,

suggesting that the covariance matrices are similar. Testing

confirms that MDA results are improved when the natural

logarithm rescaling is applied to the variables.

To explore which observed variables are most important

to discriminating between HCRs, cells, and nulls, the MDA is

provided with all possible 120 variable combinations from two

variables to seven variables. As discussed in the next section,

some of these variables are highly correlated, such as SHF and

w* (correlation of 0.86 in the training data) and UCBL and

dU/dz (correlation of 0.83 in the training data), and therefore

contain redundant information. Yet correlated variables are

still provided to MDA since at worst this situation will simply

result in little improvement in discrimination and at best it may

be that even limited amounts of independent information will

improve the discrimination. The variables that result in the

best discrimination between the groups are the observations

most important to correctly predicting circulation type and

thus may be keys to understanding the physical processes that

underlie the differences in circulation type.

Once the observations and parameters from the Oklahoma

Mesonet stations (SHF, L, and u*), the KTLX WSR-88D

(UCBL and Zi), and the convective scaling velocity w* and

wind shear dU/dz that require observations from bothMesonet

and radar, are calculated at the available observation times

(Mesonet data every 5min, KTLX data and parameters that

useKTLX data every 5–10min depending upon volume scan in

use), the observations and parameters are averaged in time for

each case. The averaging is applied over the lifetime of the

circulation, that is, from the start of the circulation to its de-

mise, and thus the averaging time length varies for each HCR

and cell case. This choice results in averaging times between

1.5 and 8 h. For null events, the time averaging is applied uni-

formly from 1800 to 2200 UTC, or over 4 h so that the mean

averaging time period is similar for all cases in the training

data. The time mean values for each case are used in the sub-

sequent analyses because they are more representative of the

environmental conditions for HCRs, cells, and nulls than

values averaged over 5 or 10min and should help to discrimi-

nate between the environments of the three groups.

The potential for an operational method to determine

whether HCRs, cells, or null cases are more likely to occur on a

given day is explored with a smaller independent dataset.

Instead of averaging observations over the time period of the

circulations, a shorter averaging time is used and chosen to be

the 30-min period prior to the start time of HCRs or cells. For

null events with no defined start time, the averaging period is

from 1800 to 1830UTC. A total of 50 additional cases (17 HCR,

17 cells, and 16 null) are used to test the usefulness of the MDA

approach as a predictive tool. Observations from both the

KTLX WSR-88D and the three Oklahoma Mesonet stations

are used, with cases again taken from the dataset of Banghoff

et al. (2020) except that different case days are chosen.

The ability of various methods to predict whether HCRs,

cells, or null cases occur based upon environmental conditions

is evaluated in several related ways. Percent correct is simply

the percentage of case days correctly identified for a particular

circulation type. Mean percent correct is the average percent

correct for all three circulation types. Weighted mean percent

correct is the percent correct weighted by the observed fre-

quencies of the three circulation types found by Banghoff et al.

(2020), or 71% HCRs, 21% cells, and 7% null cases. Here the

percent correct for HCRs is weighted 3.4 times more than the

percent correct for cells and 10.1 times more than the percent

correct for null cases.

3. Results

a. Mean environmental conditions and correlations

The mean values of the seven environmental variables cal-

culated from the 50 HCR, cell, and null cases are summarized

in Table 1, although there is considerable spread around the

means. Mean values of SHF are positive for the three circu-

lation types, as expected for a daytime CBL, with cells having

slightly larger mean SHF and w* than either HCRs or nulls.

L varies from 22 to 2343m across all cases, with cells having

the least negative mean value ofL. Slightly larger SHF andw*,
along with a less negative value of L, suggest a more con-

vectively forced CBL on days with cells.

Correlations between the seven environmental variables

are calculated using data from all 150 cases and reported in

Table 2. Results show that UCBL is positively correlated with

dU/dz and u*, and negatively correlated with L, at values

above 0.66, suggesting that much of their variations are dom-

inated by the variation in low-level wind shear magnitude.

However, these observations also contain independent infor-

mation as their intercorrelations explain less than 70% of their

variations. SHF and w* is the most highly correlated variable

pair in the dataset and both have moderate correlations with

L and negligible correlations with UCBL, dU/dz, and u*.

TABLE 1. Time-averaged values of SHF, L, u*,UCBL, dU/dz, Zi,

and w* calculated using the 50 cases each for HCRs, cells, and

nulls. The largest values from the three circulation types are shown

in boldface type, and smallest values are shown in italics.

Variable HCRs Cells Nulls

SHF (Wm22) 122 134 114

L (m) 286 221 253

u* (m s21) 0.37 0.23 0.28

UCBL (m s21) 9.1 3.5 5.9

dU/dz (s21) 4.2 3 1023 1.2 3 1023 3.0 3 1023

Zi (m) 1282 1271 1043

w* (m s21) 1.48 1.51 1.33
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These relationships also are consistent with the expectation

that variations in w* are dominated by variations in buoyancy

(characterized by SHF), which is independent of wind shear.

In contrast, L is negatively correlated with UCBL, dU/dz, and

u* supporting the idea that the height at which buoyant

forces dominate over shear is higher as the wind shear in-

creases. Last, Zi has negligible correlations with all other

variables, consistent with the expectation that the depth of

the circulations is independent of wind shear magnitude and

buoyancy.

A threshold value of UCBL ; 6m s21 for HCRs has been

suggested in other studies (Woodcock 1940; Deardorff 1976;

Weckwerth et al. 1997) to discriminate between HCRs and

cells. In the 50 HCR cases explored here, there are only 5 cases

withUCBL less than 6m s21 and the smallest case value ofUCBL

for HCRs is 4.6m s21. In contrast, the cell mean value ofUCBL

is 3.5m s21 and only 5 cell cases have UCBL . 6m s21. This

suggests that aUCBL of 6m s21 is indeed a reasonable threshold

value for discriminating between HCRs and cells, yielding a

correct discrimination 90% of the time in the training data.

Unfortunately, a scatterplot of UCBL and w* from all cases

shows that a 6m s21 threshold for UCBL has little ability to

separate out null events from the other two circulation types,

as 32 null cases have UCBL , 6m s21 and 18 null cases have

UCBL. 6m s21 (Fig. 4). This scatterplot also shows that HCRs,

cells, and nulls share similar ranges of w*, suggesting that

larger values of w* and SHF, indicative of a more convectively

forced CBL, do not lead to cells becoming more common as

might be expected. In addition, w* by itself is unable to dis-

tinguish between any of the circulation types.

Weckwerth et al. (1997) found that HCRs are present for

dU/dz . 2 3 1023 s21, cells are present for dU/dz roughly

below this value, and null and unorganized convection is as-

sociated with dU/dz values shared by both HCRs and cells.

Applying a 23 1023 s21 dU/dz threshold to the current dataset

yields an 87% correct discrimination between HCRs and cells

in the training data (Fig. 5), slightly less than found usingUCBL,

while dU/dz does not help to separate out null events (27 of 50

null events have dU/dz in excess of this threshold). This result

agrees well with the analysis of Weckwerth et al. (1997). The

mean dU/dz from the 50 HCR cases is 4.2 3 1023 s21, with a

range of CBL wind shear from 9 3 1024 to 1.33 1022 s21; this

range of dU/dz values exceeds those reported by Weckwerth

et al. (1997) and the minimum value of dU/dz suggests that the

dU/dz needed to support HCRs is very small. The dU/dz range

for cells is from 8.63 1025 to 5.43 1023 s21, overlapping with

the lower range of wind shear values for HCRs, while nulls

have the largest dU/dz range of 1.73 1025 to 1.03 1022 s21. A

closer look at the values of Zi in Table 1 and Fig. 5 show that

this variable may provide some useful discrimination between

nulls and HCRs or cells, as the mean value ofZi is nearly 200m

less for nulls. Using a threshold value of 1100m for Zi, with

values larger indicating HCRs or cells and values smaller in-

dicating nulls, yields a 68% correct discrimination (Fig. 5). The

large spread in values around the means continues to make

discrimination of nulls challenging.

TABLE 2. Correlations between the seven environmental vari-

ables calculated using observations from all 150 cases in the

training dataset.

UCBL dU/dz L u* w* SHF Zi

UCBL 1 0.83 20.73 0.66 20.15 20.14 0.12

dU/dz 1 20.64 0.42 20.34 20.22 20.15

L 1 20.37 0.44 0.41 20.12

u* 1 0.34 0.28 20.04

w* 1 0.86 0.18

SHF 1 20.16

Zi 1

FIG. 4. Scatterplot ofw* (m s21) vsUCBL (m s21) for the 50 cases

each of HCR (black circles), cell (blue squares), and null (brown

triangles) in the dataset. The horizontal red line indicates the

6m s21 value of UCBL that provides a reasonable threshold value

to separate HCR and cell cases.

FIG. 5. Scatterplot ofZi (m) vs dU/dz (31023 s21) for the 50 cases

each of HCR (black circles), cell (blue squares), and null (brown

triangles) in the dataset. The horizontal red line indicates the

2 3 1023 s21 value of dU/dz that provides a reasonable threshold

value to separateHCR and cell cases, and the vertical green dashed

line indicates the 1100-m value of Zi that helps to separate null

events from the other circulation types.
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A similar general outcome occurs when u* and SHF values

are evaluated. Themean value of u* in the dataset is largest for

HCRs and smallest for cells, as expected as the correlation

between u* andUCBL is 0.66, with a similar value ranges among

all three circulation types (not shown). Using a threshold u* value

of 0.30ms21 to discriminate betweenHCRs and cells, the dataset

yields an 87% correct discrimination between the two in the

training data (Fig. 6). Yet again there is little ability to further

discriminate null cases. The largest values of SHF are associ-

ated with cells, although cells also have the greatest spread

of SHF, and with HCRs having the narrowest distribution of

SHF. However, there is no obvious threshold value for SHF

that would distinguish between the circulation types.

As these analyses suggest, the differences in mean envi-

ronmental conditions between null, cell andHCR cases are not

large, with the mean environmental properties of nulls in be-

tween the mean values for HCRs and cells. Based upon these

comparisons, it appears that a threshold value of UCBL 5
6m s21 is slightly more helpful than the other environmental

variables in discriminating between HCRs and cells, although

none of the observations is particularly helpful at identifying

null cases.

The selected threshold value for UCBL is further evaluated

using the smaller 50 case independent dataset of environ-

mental conditions. The ranges of observational values in the

independent dataset are very similar to those in the training

dataset, with many of the relative orderings of the mean values

from the three groups identical (e.g., mean UCBL largest for

HCRs and smallest for cells, w* largest for cells and smallest

for nulls). When this mean wind speed threshold is applied

to the independent dataset, 76% of the HCR cases and 71% of

the cell cases are identified correctly. If we take into account

the observed frequencies of the three groups from Banghoff

et al. (2020) and acknowledge the lack of any ability to predict

nulls, then the weighted mean percent correct discrimination is

69%. Yet there are hints in the scatterplots that other variables

provide some information on circulation type, suggesting that a

more quantitative approach is needed to maximize the value of

the larger dataset to determine the environmental conditions

associated with the three CBL circulation types.

b. Discriminant analysis

MDA is applied to the data for HCRs, cells and nulls given

various variable combinations to determine: 1) the observation(s)

most important to correctly predicting circulation type; 2)whether

the resulting discriminant functions provide insight into the

physical processes governing circulation type; and 3) whether

environmental conditions can be used to predict circulation

type. Because some of the scatterplots show ability to distin-

guish between HCRs and cells with only two variables, the

MDA is first applied using only two variables from the training

data. All the possible two-variable combinations are used in

the MDA, yielding a total of 21 combinations. A probabilistic

classification rule is applied to the resulting LDA output and

the predicted group is compared to the observed group (HCR,

cell, null). The correct assignment of groups is then calculated

as a percent correct for HCR, cell, and null groups, and a mean

percent correct for all three groups. It is assumed that the three

groups are equally likely, such that a percent correct greater

than 33.3% shows skill above a random guess. We first explore

the results from the training data and then apply the resulting

MDA to the test dataset.

Results from the training data indicate that correctly pre-

dicting null events is the most difficult, with many of the two-

variable combinations yielding , 50% correct and a mean of

45% correct for null cases for all 21 variable combinations

(Table 3). The variable that is most useful in predicting null

events is Zi. As discussed earlier, the mean Zi value is ;200m

smaller for null events than for eitherHCRs or cells. This result

may be attributed to case selection, or it may be that the

presence of vertical circulations within the boundary layer

leads to deeper CBLs than would otherwise occur. Though null

cases occur on only 7% of the days without precipitation

(Banghoff et al. 2020), little else is known about why coherent

circulations do not occur on these days with favorable envi-

ronmental conditions.

The HCR group is the easiest to predict correctly, with$80%

correct when UCBL is one of the two-variable subsets in

Table 3. For cells,$70% correct occurs for over one-half of the

subsets, although the mean from all subsets for cells is only 4%

less than the mean for HCRs (i.e., 69% correct for HCRs, 65%

correct for cells). Replacing UCBL with dU/dz in the two-

variable MDA yields an 21% decrease in percent correct for

HCRs, yet yields a similar percent correct for cells and nulls,

further suggesting that CBL wind shear by itself is not a useful

discriminator of circulation type.

The largest mean percent correct using a two-variable

combination MDA applied to the training data includes

UCBL and Zi and yields a 69% mean percent correct, yet even

for this subset null cases are only 56% correct (Table 3). One

can increase the percent correct to 76% for nulls using the

subset w* and Zi, but at the cost of decreasing the correct

prediction for HCRs to 30%. Even with smaller SHF and w*,
the median value of Zi/w* is smaller for nulls compared to

HCRs and cells, suggesting that thermals reach the top of the

CBL more rapidly for null cases.

FIG. 6. Scatterplot of SHF (Wm22) vs u* (m s21) for the 50 cases

each of HCR (black circles), cell (blue squares), and null (brown

triangles) in the dataset.
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The value of additional predictors for discriminant analysis

is explored by providing every potential variable combination

from three variables to seven variables to the MDA, yielding

99 unique combinations. Results using the training data show

that the mean percent correct initially increases on average

as the number of variables used by MDA increases (Fig. 7),

reaching a maximum of 77% mean percent correct for the

four-variable MDA (Table 3). The predictors selected for

the best-performing MDAs are consistent, such that the pre-

dictors for the three-variable MDA appear in the four-, five-,

and six-variable MDAs, as expected. The four most important

variables are UCBL, u*, Zi, and w* (Table 3), representing

wind shear, buoyancy and CBL geometry. While UCBL and u*
have a correlation of 0.66 (Table 2), the correlations among all

other variable pairs in this 4-variable group are less than 0.35.

These results further strengthen the conclusions from earlier

studies that UCBL is an important variable for determining

CBL circulation type. The importance of the variables Zi, u*,
and w* further underscores the interplay between wind shear

and buoyancy in determining circulation type.

The best-performing variable combinations in MDA change

when assessed using the independent dataset. The MDA

function coefficients for all 21 two-variable combinations are as

determined from the training data, but the independent ob-

servations are provided as input and the group classification is

the only output. Using the independent data, the combination

of Zi and SHF yields a 75% correct for nulls (not shown), al-

though as seen with the training data this combination has little

ability to distinguish HCRs or cells. Results indicate that the

best two-variable MDA combination is u* and SHF, which

yields a weighted mean percent correct of 72% (last column in

Table 3) when the observed frequencies are taken into account,

slightly better than the weighted mean percent correct of 69%

found using a simple threshold value forUCBL. However, more

predictors may further improve the discrimination between the

three groups using MDA.

As done with the two-variable MDA, the function coeffi-

cients for the three to seven variableMDAcombinations are as

determined from the training data, but the independent ob-

servations are provided as input and the group classification is

the only output. Results show that when the MDA models

developed on the training dataset are applied to the indepen-

dent data the mean percent correct decreases by 21% on av-

erage, as expected (Fig. 7). Yet the mean percent correct for

individual MDA models consistently remains $ 33% (Fig. 7),

the percentage that results from a random assignment to re-

gime in a three category MDA. Results suggest that the MDA

using from three to seven variables performs similar to or

worse than was found using two variables when given the in-

dependent testing data and evaluated using the weighted mean

percent correct, indicating that the additional observations are

not helpful and including more variables in MDA may cause

TABLE 3. Percent correct andmean percent correct for identifying the CBL circulation type (HCR, cell, or null) of various combinations

of environmental observations when used inMDA. The 21 combinations of two variables are shown first, followed by the best-performing

3-, 4-, 5-, 6-, and 7-variable combination results, listing the variables used in the MDA. Results are compared with the training data.

Weighted mean percent correct is calculated from the independent test dataset.

Variable 1 Variable 2 HCR Cell Null Mean percent correct Weighted mean percent correct

UCBL SHF 88 70 36 65 58

UCBL u* 86 68 44 66 55

UCBL w* 86 76 36 66 57

UCBL 2L 84 72 34 63 57

UCBL dU/dz 84 74 44 67 46

u* dU/dz 78 76 44 66 65

2L w* 82 70 24 59 53

dU/dz SHF 58 70 30 53 69

UCBL Zi 80 72 56 69 35

dU/dz w* 56 70 28 51 70

u* w* 78 64 42 61 66

u* 2L 76 74 34 61 68

dU/dz Zi 62 60 52 58 28

u* Zi 72 52 64 63 31

dU/dz 2L 64 80 38 61 33

u* SHF 72 72 32 59 72

2L SHF 68 72 32 57 48

2L Zi 64 70 60 65 24

SHF Zi 50 20 74 48 22

w* Zi 30 36 76 47 19

w* SHF 26 40 56 41 40

Variables in best MDA

MDA3 UCBL, u*, and Zi 82 72 66 73 31

MDA4 UCBL, u*, Zi, and w* 84 74 72 77 32

MDA5 UCBL, u*, Zi, w*, and 2L 82 74 68 75 37

MDA6 UCBL, u*, Zi, w*, 2L, and dU/dz 82 76 68 75 33

MDA7 All variables 80 76 62 73 42
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overfitting. The best overall MDA as determined from the

independent dataset uses only two variables, u* and SHF,

followed by the three-variable MDA using u*, SHF, and L;

both have a weighted mean percent correct of 72%. This result

suggests that it is possible to predict CBL circulation type using

surface data alone using MDA.

4. Summary

Surface observations from the OklahomaMesonet and CBL

observations from the KTLX WSR-88D are used to calculate

SHF,L, u*,UCBL, dU/dz,Zi, andw* for 50 cases each of HCR,

cell and null events in central Oklahoma between 2013 and

2017. These environmental variables can be estimated rou-

tinely at many locations. The size of the dataset yields enough

variability to examine which environmental parameters are

associated with the three circulation types, with cases selected

from the dataset of Banghoff et al. (2020). The 150 cases rep-

resent the largest dataset to date to determine whether envi-

ronmental conditions can be used to predict CBL circulation

type—HCR, cell, or null. Results from the training data indi-

cate that MDA applied to observations of UCBL, u*, Zi, and

w* yields a 77% mean percent correct and an 80% weighted

mean percent correct. When MDA is applied to an indepen-

dent dataset, the largest weighted mean percent correct drops

to 72% and the best-performing MDA is a two-variable model

using u* and SHF, which highlights the importance of winds

and buoyancy in determining circulation type. This result fur-

ther suggests that surface observations alone may be helpful in

predicting CBL circulation type. The presence of hybrid events

in the datasets, such as combined HCR and cell circulations,

would adversely affect the MDA results and may contribute

to a lower weighted mean percent correct.

If one is interested only in whether the CBL circulation on a

given day is likely to be a cell or HCR, thenUCBL5 6m s21 can

be used to discriminate between the two, withHCRs present 76%

of the time in the independent dataset when UCBL . 6m s21

and cells present 71% of the time when this mean wind speed

value is not exceeded. This yields a weighted mean percent

correct of 69% when taking into account the observed fre-

quencies of the CBL circulations, just slightly less than found

using MDA. This wind speed threshold agrees well with pre-

vious values of 7m s21 suggested by Woodcock (1940), 5m s21

suggested by Christian and Wakimoto (1989), and 5.5m s21

suggested by Weckwerth et al. (1997).

As mentioned previously, it is the ability to determine null

events that is most difficult. Because Banghoff et al. (2020)

show that HCRs or cells occur on 92% of the days without

precipitation, the importance of predicting null events may not

be large. Yet, the reasonwhy null events occur when conditions

seem favorable for the development of boundary layer circu-

lations, such as HCRs and cells, is unclear. The MDA results

are encouraging in that they suggest that the environments of

null events can be distinguished from those of cells and HCRs

and deserves further study. The results of this study further

show that advent of operational dual-polarization WSR-88Ds

across the United States opens a new research opportunity

for studying boundary layer circulations using radar. A simple

combination of operational radars with a well-designed surface

observation network has shown itself to be very fruitful, which

can benefit other areas of boundary layer research.
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